PIC Peripherals

Dr. Altaf Osman Mulani E&TC Department SKN SINHGAD COLLEGE OF ENGG., KORTI, PANDHARPUR

Course Outcomes

Course Name	:Microcontrollers & Applications	Course Code:	: ET312				
Class	:Third Year B.Tech.	Semester	: I				
Academic Year	:202223	Subject Teacher	: Dr. A. O. Mula	ni			
CO No.	Course Ou	tcome Statements		Cognitive Level			
ET312.1	To recognize the fundamental features and ope	eration of contemporary m	icrocontroller	Remember, Understand			
ET312.2	To illustrate the hardware interfacing.	Understar Apply, Analyze, Create					
ET312.3	To discuss the fundamentals of CISC and RIS	C Microcontroller architec	etures	Remember, Understand			
ET312.4	To discuss various core and peripheral feat	To discuss various core and peripheral features in microcontroller family					
ET312.5	To demonstrate the programs in assembly lang	guage and C language for 1	microcontrollers	Understand, Apply, Create			

ADCONO register (address 1FH)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
bit 7	1	1			•		bit 0

ADC\$1:ADC\$0: A/D Conversion Clock Select bits (ADCON0 bits in bold)

ADCON1 <adcs2></adcs2>	ADCON0 <adc\$1:adc\$0></adc\$1:adc\$0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 = Channel 0 (AN0)
- 001 = Channel 1 (AN1)
- 010 = Channel 2 (AN2)
- 011 = Channel 3 (AN3)
- 100 = Channel 4 (AN4)
- 101 = Channel 5 (AN5)
- 110 = Channel 6 (AN6)
- 111 = Channel 7 (AN7)
- bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
- 0 = A/D conversion not in progress
- bit 1 Unimplemented: Read as '0'
- bit 0 ADON: A/D On bit

bit 7-6

- 1 = A/D converter module is powered up
- 0 = A/D converter module is shut-off and consumes no operating current

ADCON1 register (address 9FH):

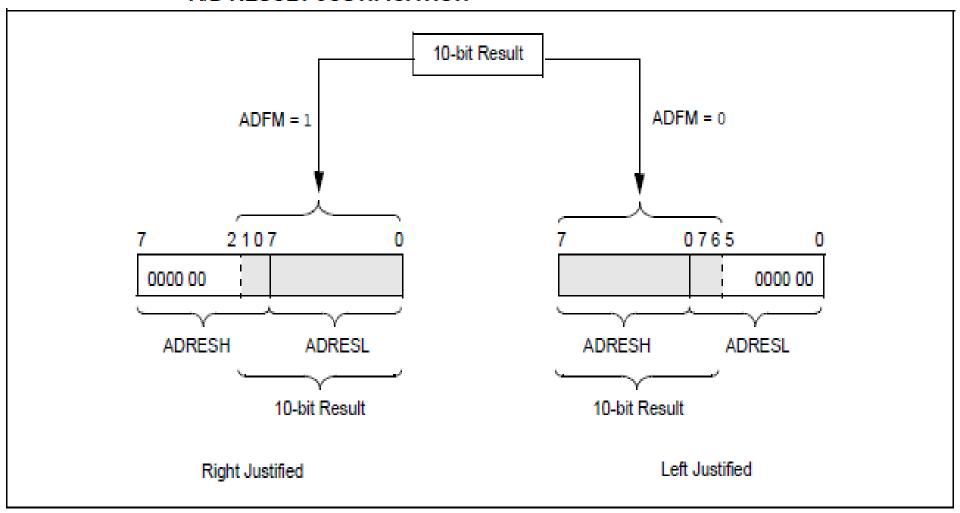
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7	-	-					bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.

0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 5-4 Unimplemented: Read as '0'

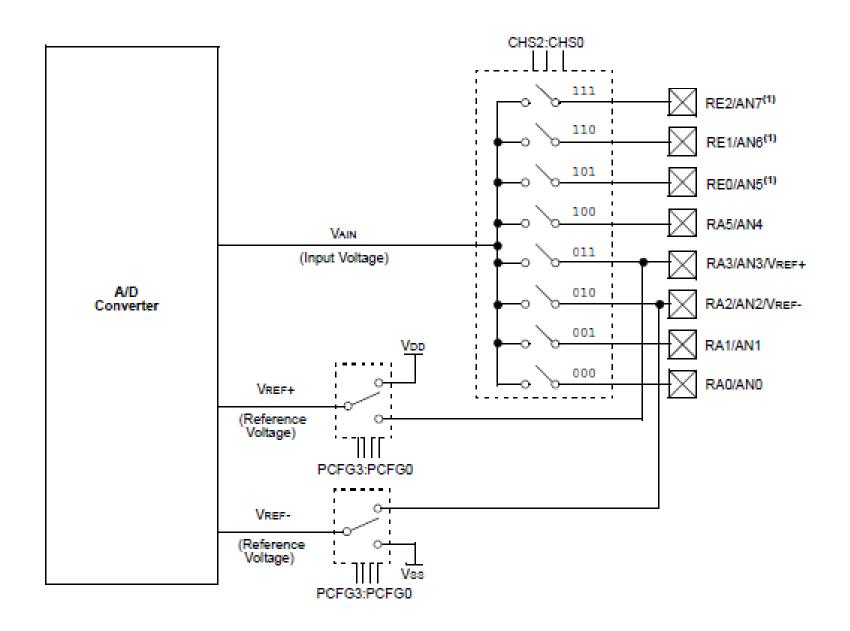

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	_	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

A/D RESULT JUSTIFICATION

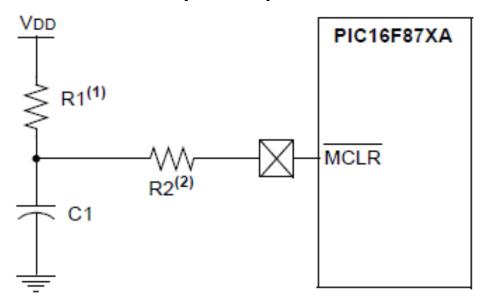

ADC Conversion:

Follow these steps A/D Conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCONO)
 - Select A/D conversion clock (ADCONO)
 - Turn on A/D module (ADCONO)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIF bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCONO)
- 5. Wait for A/D conversion to complete.
- 6. Read A/D Result register pair (ADRESH:ADRESL), clear bit ADIF if required.

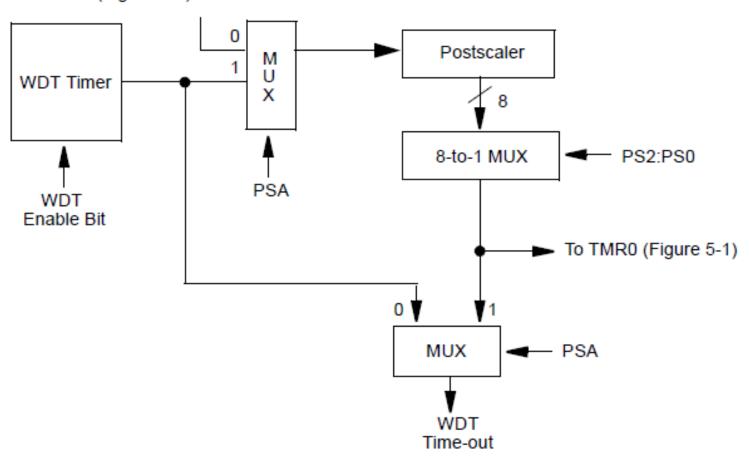
#INCLUDE <p16f877a.inc></p16f877a.inc>	BSF INTCON,GIE
RO EQU 20H	BSF INTCON, PEIE
BSF STATUS,RPO	BSF PIE1,ADIE
MOVLW 80H	BSF ADCONO,GO
MOVWF ADCON1	
MOVLW 3FH	A2:DECFSZ R0
MOVWF TRISA	GOTO A2
MOVLW 07H	
MOVWF TRISE	A3:BTFSC ADCON0,GO
CLRF TRISB	GOTO A3
CLRF TRISD	F0:MOVF ADRESH,W
BCF STATUS, RPO	MOVWF PORTB
	MOVF ADRESL,W
MOVLW 81H	MOVWF PORTD
MOVWF ADCONO	RETURN
A1:BCF PIR1,ADIF	END
BSF STATUS,RPO	

ADC



Types of Oscillator

- PIC16F877A can be operated in four different oscillator modes.
- The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:
 - ▶ LP Low-Power Crystal (5 200 KHz)
 - XT Crystal/Resonator (100 KHz 4 MHz)
 - HS High-Speed Crystal/Resonator (4 20 MHz)
 - RC Resistor/Capacitor (0 − 4 MHz)


Types of reset

Power On Reset (POR)

Watchdog Timer

From TMR0 Clock Source (Figure 5-1)

Note: PSA and PS2:PS0 are bits in the OPTION_REG register.

Watchdog Timer

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	Fosc1	Fosc0
OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0

PIE1 Register

PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
hit 7							hit ∩

PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit
1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt
ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D converter interrupt
0 = Disables the A/D converter interrupt
RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt
TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt
SSPIE: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt
0 = Disables the SSP interrupt
CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt
TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt

PIR1 Register

PSPIF(1)	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
1 01 11	70	11011	17311	00111	001 111	1111111111111	11011 (111

PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit

1 = A read or a write operation has taken place (must be cleared in software)

0 = No read or write has occurred

ADIF: A/D Converter Interrupt Flag bit

1 = An A/D conversion completed

0 = The A/D conversion is not complete

RCIF: USART Receive Interrupt Flag bit

1 = The USART receive buffer is full

0 = The USART receive buffer is empty

TXIF: USART Transmit Interrupt Flag bit

1 = The USART transmit buffer is empty

0 = The USART transmit buffer is full

SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit

1 = The SSP interrupt condition has occurred (must be cleared in s/w)

0 = No SSP interrupt condition has occurred

CCP1IF: CCP1 Interrupt Flag bit

Capture mode:

1 = A TMR1 register capture occurred

0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred

0 = No TMR1 register compare match occurred

TMR2IF: TMR2 to PR2 Match Interrupt Flag bit

1 = TMR2 to PR2 match occurred

0 = No TMR2 to PR2 match occurred

TMR1IF: TMR1 Overflow Interrupt Flag bit

1 = TMR1 register overflowed (must be cleared in software)

0 = TMR1 register did not overflow

PIE2 Register

_	CMIE	_	EEIE	BCLIE	_	_	CCP2IE
bit 7	•	•		•	•	•	bit 0

CMIE: Comparator Interrupt Enable bit

- 1 = Enables the comparator interrupt
- 0 = Disable the comparator interrupt

EEIE: EEPROM Write Operation Interrupt Enable bit

- 1 = Enable EEPROM write interrupt
- 0 = Disable EEPROM write interrupt

BCLIE: Bus Collision Interrupt Enable bit

- 1 = Enable bus collision interrupt
- 0 = Disable bus collision interrupt

CCP2IE: CCP2 Interrupt Enable bit

- 1 = Enables the CCP2 interrupt
- 0 = Disables the CCP2 interrupt

PIR2 Register

_ CMIF _ EEIF BCLIF _ _ CCP2IF

bit 7 bit 0

CMIF: Comparator Interrupt Flag bit

- 1 = The comparator input has changed (must be cleared in s/w)
- 0 = The comparator input has not changed

EEIF: EEPROM Write Operation Interrupt Flag bit

- 1 = The write operation completed (must be cleared in s/w)
- 0 = The write operation is not complete or has not been started

BCLIF: Bus Collision Interrupt Flag bit

- 1 = A bus collision has occurred in the SSP when configured for I2C Master mode
- 0 = No bus collision has occurred

CCP2IF: CCP2 Interrupt Flag bit

Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in s/w)
- 0 = No TMR1 register capture occurred

Compare mode:

- 1 = A TMR1 register compare match occurred (must be cleared in s/w)
- 0 = No TMR1 register compare match occurred