DIGITAL SIGNAL PROCESSING

Introduction

Mr. Birajadar G B Assistant Professor, E&TC Department SKNSCOE Korti

Digital Signal Processing

Course Objectives

Course Name	: Digital Signal Processing	Course Code:	: ET313
Class	: TY	Semester	: I
Academic Year	: 202223	Subject Teacher	: Birajadar G. B.
CO No.	Course Outcome Statements		Cognitive Level
ET313.1	Solve problems based on Correlation and DFT		L3: Apply
ET313.2	Analyze response of the system using linear filtering		L3: Apply
ET313.3	Calculate FFT of the Discrete signal		L3: Apply
ET313.4	Analyze FIR & IIR filter coefficients using different techniques.		L3: Apply
ET313.5	Realize transfer function of FIR & IIR filters using different methods		L3: Apply
ET313.6	Apply concepts of DSP in various applications		L1: Understanding

Digital Signal Processing..... Why

?

- Analog systems are very susceptible to noise.
- Analog system behavior changes with time because of the change in behavior of analog components like resistors, capacitors, transistors etc.
- Analog systems designed for a purpose can be used only for that purpose and not for any other purpose.
- Digital are less susceptible to noise and if properly designed can remove susceptibility to noise completely.
- Behavior stays same throughout lifetime.
- Flexible because they can be programmed to multiple tasks using a DSP.

Digital Signal Processing..... Why

- Signals need to be processed so that the information that they contain can be displayed, analyzed, or converted to another type of signal that may be of use.
- In the real-world, analog products detect signals such as sound, light, temperature or pressure and manipulate them.
- Converters such as an A/D converter then take the real-world signal and turn it into the digital format of 1's and 0's.
- DSP takes over by capturing the digitized information and processing it.
- It then feeds the digitized information back for use in the real world, either digitally or in an analog format by going through a D/A converter.
- All of this occurs at very high speeds.

Real Time example MP3 Audio Player

- To illustrate this concept, the diagram below shows how a DSP is used in an MP3 audio player.

MP3 encoding, decoding, volume control, equalization

SKNSCOE Korti Pandharpur

DSP Block Diagram

What is inside DSP ?

- Program Memory: Stores the programs
- Data Memory: Stores the information to be processed
- Compute Engine: Performs the math processing

Input/Output:

connect to the outside world

Advantages of DSP over Analog SP

- Flexibility: Same hardware can be used to do various kind of signal processing operation
- Repeatability: The same signal processing operation can be repeated again and again giving same results
- Accuracy: Depends on word length, floating or fixed point arithmetic
- Easy Storage: Can be easily stored on disk
- **Easy Implementation:** Operations can be easily implemented
- Cheaper to Implement

The choice between analog or digital signal processing depends on application. One has to compare design time, size and cost of the implementation.

Disadvantages of DSP over Analog SP

- System Complexity:
- Limited Bandwidth:
- More costly hardware:
- More power consumption:

The choice between analog or digital signal processing depends on application. One has to compare design time, size and cost of the implementation.

Applications of DSP

- Filtering
- Speech synthesis in which white noise (all frequency components present to the same level) is filtered on a selective frequency basis in order to get an audio signal
- Speech compression and expansion for use in radio voice communication
- Speech recognition
- Signal analysis
- Image processing like filtering, edge effects, enhancement
- Modulation used in telecommunication
- High speed MODEM data communication using pulse modulation systems such as FSK, QAM etc
- Wave form generation

Applications of DSP

- ✓ **Telecommunication** Systems modulation, echo cancellation
- ✓ **Consumer electronics** Digital Camera, Digital TV
- ✓ **Music** Synthetic instruments, Noise reduction, Audio effects
- ✓ **Biomedical** MRI, Ultrasonic imaging, ECG, EEG, MEG
- Experimental Physics Sensor data evaluation
- ✓ Aviation RADAR, radio navigation
- Image Processing Image analysis, Pattern recognition
- Military Missile Guidance
- ✓ **Audio & Speech processing** Speech recognition, Speech Synthesis
- ✓ Instrumentation & Control Robot control
- Seismology Earth quake monitoring, Detection of underground nuclear explosion

Correlation

- **Correlation** is a measure of similarity between two signals.
- There are two types of correlation:
 - 1. Auto correlation

$$\gamma_{xx}(l) = \sum_{-\infty}^{\infty} x(n)x(n-l)$$
 $l = 0, \pm 1, \pm 2 \dots$

2. Cross correlation

$$\gamma_{xy}(l) = \sum_{-\infty}^{\infty} x(n)y(n-l)$$
 $l = 0, \pm 1, \pm 2 \dots$

where, Index *l* represent lag or shift parameter

Properties of Correlation

• For *l*=0, Autocorrelation defines energy of sequence.

$$\gamma_{xx}(0) = \sum_{-\infty}^{\infty} |x^2(n)|$$

• Correlation possess property of even sequence.

$$\gamma_{xx}(l) = \gamma_{xx}(-l)$$

$$\gamma_{xy}(l) = \gamma_{xy}(-l)$$

Correlation & Convolution

$$\gamma_{xy}(n) = \mathbf{x}(n) * y(-n)$$

Example

• Given x(n)={1,2,3,4} h(n) = {1,2,1,2} Find cross correlation.

Steps :

- 1. Find range of x(n) & h(-n)
- 2. Calculate range of *l*
- 3. Calculate range of n from x(n)
- 4. For each value of *l* find correlation values.

 $\gamma_{xy}(l) = \sum_{-\infty}^{\infty} x(n)y(n-l)$ $l = 0, \pm 1, \pm 2 \dots$

Discrete Fourier Transform

- Frequency domain representation of x(n) by samples of its spectrum X(w)
- Discrete Fourier Transform

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$
 k=0,1, ... N-1

Inverse Discrete Fourier Transform

$$x(n) = (1/N) \sum_{k=0}^{N-1} X(k) e^{j2\pi kn/N}$$
 n=0,1, ... N-1

Properties of DFT

- Periodicity
- Linearity
- Circular Time Shift
- Time reversal
- Circular Frequency Shift
- Complex Conjugate Property
- Circular Convolution

X(k+N) = X(k) DFT[$ax_1(n)+bx_2(n)$]= $aX_1(k)+bX_2(k)$ DFT[$x((n-m))_N$]= $e - \frac{j2\pi km}{N}$ X(k) DFT[$x((-n))_N$]= X(N-k) DFT[$x(n)e^{j2\pi ln}/N$ =X((k-l))_N DFT[$x^*(n)$]=X*(N-k) DFT[$x_1(n) N x_2(n)$]= X₁(k).X₂(k)

Multiplication of two DFT's in frequency domain is nothing but circular convolution in time domain.

DFT using Twiddle factor

• Same set of W values that repeat over & over for different values of n

$$W_N^{nk} = e - j^{2\pi kn} / N$$

Discrete Fourier Transform

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$
 k=0,1, ... N-1

Inverse Discrete Fourier Transform

$$x(n) = (1/N) \sum_{k=0}^{N-1} X(k) W_N^{-nk}$$
 n=0,1, ... N-1

Properties of Twiddle factor

• Periodicity

$$W_N^r = W_N^{r+N}$$

• Symmetry

$$W_N^r = -W_N^{r\pm(N/2)}$$

Circular Convolution

- Graphical Method / Concentric Circle Method
 - \checkmark Given two sequences x(n) & h(n).
 - ✓ Graph x(n) around outer circle in counter clockwise direction.
 - ✓ Graph h(n) around inner circle in clockwise direction.
 - Multiply corresponding samples on two circles.
 - Rotate inner circle one sample at a time in counter clockwise direction.
 - ✓ Repeat step no 4

Circular Convolution

- Matrix Multiplication Method
 - One of the given sequences is repeated via circular shift of one sample at a time to form a N X N matrix.
 - ✓ The other sequence is represented as column matrix.
 - The multiplication of two matrices give the result of circular convolution.

h(n)

Circular Convolution

Tabular Method

- ✓ One of the given sequences is rotated circularly. g(n)
- ✓ The other sequence is rotated linearly.
- ✓ Addition of each column gives output .

y(0) y(1) y(2) y(3)

Circular Convolution

- DFT IDFT Method
 - ✓ Find DFT of both sequences. X(k) , H(k)
 - ✓ Multiply both DFTs. Y(k) = X(k).H(k).
 - ✓ Find inverse DFT of multiplication answer. Y(n) = IDFT (Y(k))

Linear Vs Circular Convolution

Linear Convolution

- If x(n) is sequence of L no of samples & h(n) is sequence of M no of samples, output y(n) will contain N= L+M-1 samples.
- 2. y(n) = x(n)*h(n)
- 3. Used to find response of linear filter.
- 4. Zero padding is not necessary.

Circular Convolution

- If x(n) is sequence of L no of samples & h(n) is sequence of M no of samples, output y(n) will contain N= max(L,M) samples.
- 2. y(n) = x(n) N h(n)
- Can't be used to find response of linear filter.
- 4. Zero padding is necessary.

Linear Convolution using DFT IDFT

Overlap Save Method

Overlap ADD Method

Overlap Save Vs Overlap Add

Overlap Save

- 1. Size of input data block L+M-1
- Each data block consists of last M-1 elements of previous data block, followed by new L data points
- In each output block, first M-1 elements are corrupted due to aliasing.
- 4. To get output, first M-1 data points are discarded from each output block.

Overlap Add

- 1. Size of input data block L
- Each data block consists of L points. We append M-1 zeros to each block.
- 3. There is no aliasing.
- 4. To get output, last M-1 points from each block are added to first M-1 points of successive output block.

Direct evaluation of DFT

To evaluate one value of X(k)

No. of complex multiplications = N
No. of complex additions = N -1
No. of real multiplications = 4 N
No. of real additions = 4 N - 2

To evaluate N point DFT X(k)
No. of complex multiplications = N²
No. of complex additions = N(N -1)
No. of real multiplications = 4 N²
No. of real additions = N (4 N - 2)

Divide & Conquer Approach

Consider sequence of length N = 15

N = L * M = 5 * 3

Divide & Conquer Approach

Algorithm 1

- Store the signal column wise.
- Compute M point DFT of each row.
- Multiply resulting array by phase factor W^{Iq}_N
- Compute L point DFT of each column.
- Read resulting array row wise
- Algorithm 2
 - Store the signal row wise.
 - Compute L point DFT of each column.
 - Multiply resulting array by phase factor W^{pm}_N
 - **Compute M point DFT of each row.**
 - Read resulting array column wise

Bit reversal algorithm

I/p sample index	Binary representation	Bit reversed Binary	Bit reversed I/P index
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Decimation in Time FFT algorithm

- □ No. of input samples $N = 2^{M}$ where M is integer.
- Input is bit reversed & output is in natural order.
- \Box No. of stages in flow graph = M = log ₂ N.
- \Box No. of butterflies in each stage = N / 2.
- □ Input Output samples are separated by 2^(m-1) samples where m is stage index.
- □ No. of complex multiplications = $(N/2) \log_2 N$.
- \Box No. of complex additions = N log 2 N.
- Twiddle factor exponents are function of stage index m
 - $k = Nt/2^m$ $t = 0, 1,, 2^{m-1} 1$
- □ No of sections of butterflies in each stage = 2^{M-m}

Exponent repeat factor (ERF) = 2^{M-m}

Decimation in Frequency FFT algorithm

- \square No. of input samples N= 2^M where M is integer.
- Input is in natural order & output is bit reversed.
- \Box No. of stages in flow graph = M = log ₂ N.
- \Box No. of butterflies in each stage = N / 2.
- □ Input Output samples are separated by 2^(M-m) samples where m is stage index.
- □ No. of complex multiplications = $(N/2) \log_2 N$.
- \Box No. of complex additions = N log 2 N.
- Twiddle factor exponents are function of stage index m
 - $k = Nt/2^{M-m+1}$ $t = 0, 1, ..., 2^{M-m} 1$
- \Box No of sections of butterflies in each stage = 2^{m-1}
- **Exponent repeat factor (ERF) = 2^{m-1}**

Similarities & Differences in DIT & DIF

- ✓ Same no of computations are required.
- Both can be done in place.
- Both need to perform bit reversal at some place.
- ✓ In DIT Input is bit reversed & output is in natural order.
- ✓ In DIF Input is in natural order & output is bit reversed.
- ✓ Basic operation

IDFT using FFT algorithm

- □ Take complex conjugate of given sequence.
- Depend on DIT or DIF arrange input sequence.
- □ Apply respective algorithm.
- Depend on DIT or DIF read output sequence.
- Output calculated is in terms of N . $x^*(n)$
- □ To get final output sequence, divide output by N & take complex conjugate.

THANK YOU :: ::