
1Basic VHDL course

Digital Design and HDL

Mrs. Anjali Pise

Asst Prof

E&TC Dept.

SKNSCOE Korti

2Basic VHDL course

Course Outcomes

Course Name :Digital Design and HDL (ET312) Course Code: : ET 312

Class : TY SEMESTER : I

Academic Year : 2021-22 Subject Teacher : Prof. A. C. Pise

CO No. Course Outcome Statements
Cognitive

Level

CO1 Explain different syntax of HDL language.
L2:

Understand

CO2 Model combinational logic circuits using VHDL and Verilog. L3: Apply

CO3 Model sequential logic circuits using VHDL. L3: Apply

CO4
Describe architecture and internal components of CPLD, FPGA, ASIC and SOC and

compare them.

L2:

Understand

CO5
Explain different testing methods for combinational Logic, sequential logic, IC and

write test bench for simple combinational circuits.

L2:

Understand

3Basic VHDL course

Outline

Introduction

Concepts and History of VHDL

Summary

VHDL Models of Hardware

VHDL Basics

4Basic VHDL course

Course Goals

Comprehension of VHDL Basic Constructs

Familiarity with VHDL design descriptions

Understanding of the VHDL Timing Model

5Basic VHDL course

Introduction
Digital systems design process

Flow Graph, Pseudo Code, ...

Bus & Register Structure

Gate Wirelist, Netlist

Transistor List, Layout, ...

Design Idea

Behavioral Design

Data Path Design

Logic Design

Physical Design

Manufacturing

Chip or Board

6Basic VHDL course

* Problem

Design a single bit half adder with carry and enable

* Specifications

- Passes results only on enable high

- Passes zero on enable low

- Result gets x plus y

- Carry gets any carry of x plus y

Half Adder
x

y

enable

carry

result

Sample Design Process

7Basic VHDL course

* Starting with an algorithm, a high level description of the

adder is created.

* The model can now be simulated at this high level

description to verify correct understanding of the problem.

Half Adder

X

y

enable

carry

result

IF enable = 1 THEN

result = x XOR y

carry = x AND y

ELSE

carry = 0

result = 0

Behavioral Design

8Basic VHDL course

* With the high level description confirmed, logic equations

describing the data flow are then created

* Again, the model can be simulated at this level to confirm

the logic equations

(x AND y) AND enable

(x'y OR xy') AND enable

x

y

enable

carry

result

carry = (x AND y) AND enable

result = (x'y OR xy') AND enable

Data Flow Design

9Basic VHDL course

* Finally, a structural description is created at the gate level

* These gates can be pulled from a library of parts

x
y

enable

x

y

carry

result

Logic Design

10Basic VHDL course

What is VHDL?

A Standard Language

VHDL is the VHSIC (Very High Speed Integrated

Circuit) Hardware Description Language

A Simulation Modeling Language

A Design Entry Language

A Netlist Language

11Basic VHDL course

History of VHDL

* 1981: Initiated in 1981 by US DoD to address the hardware

life-cycle crisis

* 1983-85: Development of baseline language by Intermetrics,

IBM and TI

* 1986: All rights transferred to IEEE

* 1987: Publication of IEEE Standard

* 1987: Mil Std 454 requires comprehensive VHDL descriptions

to be delivered with ASICs

* 1994: Revised standard (named VHDL 1076-1993)

12Basic VHDL course

How is VHDL used?

* For design specification

* For design capture

* For design simulation

* For design documentation

* As an alternative to schematics

* As an alternative to proprietary languages

13Basic VHDL course

WHY VHDL?

It will dramatically improve your

productivity

14Basic VHDL course

* Support for concurrent statements

- in actual digital systems all elements of the system

are active simultaneously and perform their

tasks simultaneously.

* Library support

- user defined and system predefined primitives

reside in a library system

* Sequential statements

- gives software-like sequential control (e.g. case,

if-then-else, loop)

Features of VHDL

15Basic VHDL course

* Support for design hierarchy

Features of VHDL

M

M

M

16Basic VHDL course

* Generic design

- generic descriptions are configurable for size,

physical characteristics, timing, loading,

environmental conditions.

(e.g. LS, F, ALS of 7400 family are all functionally

equivalent. They differ only in timing.

* Use of subprograms

- the ability to define and use functions and procedures

- subprograms are used for explicit type conversions,

operator re-definitions, ... etc

Features of VHDL

17Basic VHDL course

* Type declaration and usage

- a hardware description language at various levels

of abstraction should not be limited to Bit or

Boolean types.

- VHDL allows integer, floating point, enumerate

types, as well as user defined types

- possibility of defining new operators for the new

types.

Features of VHDL

18Basic VHDL course

* Timing control

- ability to specify timing at all levels

- clocking scheme is completely up to the user, since the

language does not have an implicit clocking scheme

- constructs for edge detection, delay specification, ... etc

are available

* Technology independent

Features of VHDL

19Basic VHDL course

What about Verilog?

* Verilog has the same advantage in availability of simulation

models

*Verilog has a PLI that permits the ability to write parts of

the code using other languages

* VHDL has higher-level design management features

(configuration declaration, libraries)

* VHDL and Verilog are identical in function and different

in syntax

* No one can decide which language is better.

20Basic VHDL course

VHDL Design Process

Entity

Architecture 1

(behavioral)

Architecture 2

(dataflow)

Architecture 3

(structural)

21Basic VHDL course

* An entity declaration describes the interface of the component

* PORT clause indicates input and output ports

* An entity can be thought of as a symbol for a component

ENTITY half_adder IS

PORT (x, y, enable: IN bit;

carry, result: OUT bit);

END half_adder;

Half Adder
X

y

enable

carry

result

Entity Declaration

22Basic VHDL course

* PORT declaration establishes the interface of the object

to the outside world

* Three parts of the PORT declaration

o Name

o Mode

o Data type

Port Declaration

ENTITY test IS

PORT (<name> : <mode> <data_type>);

END test;

23Basic VHDL course

Any legal VHDL identifier

Name

* Only letters, digits, and underscores can be used

* The first character must be a letter

* The last character cannot be an underscore

* Two underscore in succession are not allowed

Legal names Illegal names

rs_clk _rs_clk

ab08B signal#1

A_1023 A__1023

rs_clk_

24Basic VHDL course

* The port mode of the interface describes the direction of the

data flow with respect to the component

* The five types of data flow are

- In : data flows in this port and can only be read

(this is the default mode)

- Out : data flows out this port and can only be written to

- Buffer : similar to Out, but it allows for internal feedback

- Inout : data flow can be in either direction with any

number of sources allowed (implies a bus)

- Linkage: data flow direction is unknown

Port Mode

25Basic VHDL course

* The type of data flowing through the port must be specified to

complete the interface

* Data may be of many different types, depending on the

package and library used

* Some data types defined in the standards of IEEE are:

o Bit, Bit_vector

o Boolean

o Integer

o std_ulogic, std_logic

Type of Data

26Basic VHDL course

* Architecture declarations describe the operation of the

component

* Many architectures may exist for one entity, but only

one may be active at a time

ARCHITECTURE behavior1 OF half_adder IS

BEGIN

PROCESS (enable, x, y)

BEGIN

IF (enable = '1') THEN

result <= x XOR y;

carry <= x AND y;

ELSE

carry <= '0';

result <= '0';

END PROCESS;

END behavior1;

Architecture Body # 1

27Basic VHDL course

ARCHITECTURE data_flow OF half_adder IS

BEGIN

carry = (x AND y) AND enable;

result = (x XOR y) AND enable;

END data_flow;

Architecture Body # 2

28Basic VHDL course

Architecture Body # 3

x
y

enable

x

y

carry

result

* To make the structural architecture, we need first to

define the gates to be used.

* In the shown example, we need NOT, AND, and OR

gates

29Basic VHDL course

Architecture Body # 3 (cntd.)

ENTITY not_1 IS

PORT (a: IN bit; output: OUT bit);

END not_1;

ARCHITECTURE data_flow OF not_1 IS

BEGIN

output <= NOT(a);

END data_flow;

ENTITY and_2 IS

PORT (a,b: IN bit; output: OUT bit);

END not_1;

ARCHITECTURE data_flow OF and_2 IS

BEGIN

output <= a AND b;

END data_flow;

30Basic VHDL course

Architecture Body # 3 (contd.)

ENTITY or_2 IS

PORT (a,b: IN bit; output: OUT bit);

END or_2;

ARCHITECTURE data_flow OF or_2 IS

BEGIN

output <= a OR b;

END data_flow;

ENTITY and_3 IS

PORT (a,b,c: IN bit; output: OUT bit);

END and_3;

ARCHITECTURE data_flow OF and_3 IS

BEGIN

output <= a AND b AND c;

END data_flow;

31Basic VHDL course

ARCHITECTURE structural OF half_adder IS

COMPONENT and2 PORT(a,b: IN bit; output: OUT bit); END COMPONENT;

COMPONENT and3 PORT(a,b,c: IN bit; output: OUT bit); END COMPONENT;

COMPONENT or2 PORT(a,b: IN bit; output: OUT bit); END COMPONENT;

COMPONENT not1 PORT(a: IN bit; output: OUT bit); END COMPONENT;

FOR ALL: and2 USE ENTITY work.and_2(dataflow);

FOR ALL: and3 USE ENTITY work.and_3(dataflow);

FOR ALL: or2 USE ENTITY work.or_2(dataflow);

FOR ALL: not1 USE ENTITY work.not_2(dataflow);

SIGNAL v,w,z,nx,nz: BIT;

BEGIN

c1: not1 PORT MAP (x,nx);

c2: not1 PORT MAP (y,ny);

c3: and2 PORT MAP (nx,y,v);

c4: and2 PORT MAP (x,ny,w);

c5: or2 PORT MAP (v,w,z);

c6: and2 PORT MAP (enable,z,result);

c7: and3 PORT MAP (x,y,enable,carry);

END structural;

Architecture Body # 3 (contd.)

x
y

enable

x

y

carry

resultz

v

w

32Basic VHDL course

EntityGenerics Ports

Architecture Architecture Architecture

(structural)

Concurrent

Statements

Concurrent

Statements
Process

Sequential

Statements

Summary

33Basic VHDL course

* Data Objects

* Data Types

* Types and Subtypes

* Attributes

* Sequential and Concurrent Statements

* Procedures and Functions

* Packages and Libraries

* Generics

* Delay Types

VHDL BASICS

34Basic VHDL course

* There are four types of objects in VHDL

- Constants

- Signals

- Variables

- Files

* File declarations make a file available for use to a design

* Files can be opened for reading and writing

* Files provide a way for a VHDL design to communicate

with the host environment

VHDL Objects

35Basic VHDL course

* Improve the readability of the code

* Allow for easy updating

VHDL Objects

Constants

CONSTANT <constant_name> : <type_name> := <value>;

CONSTANT PI : REAL := 3.14;

CONSTANT WIDTH : INTEGER := 8;

36Basic VHDL course

* Signals are used for communication between components

* Signals can be seen as real, physical wires

VHDL Objects

Signals

SIGNAL <signal_name> : <type_name> [:= <value>];

SIGNAL enable : BIT;

SIGNAL output : bit_vector(3 downto 0);

SIGNAL output : bit_vector(3 downto 0) := "0111";

37Basic VHDL course

* Variables are used only in processes and subprograms

(functions and procedures)

* Variables are generally not available to multiple components

and processes

* All variable assignments take place immediately

VHDL Objects

Variables

VARIABLE <variable_name> : <type_name> [:= <value>];

VARIABLE opcode : BIT_VECTOR (3 DOWNTO 0) := "0000";

VARIABLE freq : INTEGER;

38Basic VHDL course

* A key difference between variables and signals is the assignment delay

Signals versus Variables

Time a b c out_1 out_2

0 0 1 1 1 0

1 1 1 1 1 0

1+d 1 1 1 0 0

ARCHITECTURE signals OF test IS

SIGNAL a, b, c, out_1, out_2 : BIT;

BEGIN

PROCESS (a, b, c)

BEGIN

out_1 <= a NAND b;

out_2 <= out_1 XOR c;

END PROCESS;

END signals;

39Basic VHDL course

ARCHITECTURE variables OF test IS

SIGNAL a, b, c: BIT;

VARIABLE out_3, out_4 : BIT;

BEGIN

PROCESS (a, b, c)

BEGIN

out_3 := a NAND b;

out_4 := out_3 XOR c;

END PROCESS;

END variables;

Signals versus Variables (cont. 1)

Time a b c out_3 out_4

0 0 1 1 1 0

1 1 1 1 0 1

40Basic VHDL course

* VHDL limits the visibility of the objects, depending on where

they are declared

* The scope of the object is as follows

o Objects declared in a package are global to all entities that

use that package

o Objects declared in an entity are global to all architectures

that use that entity

o Objects declared in an architecture are available to all

statements in that architecture

o Objects declared in a process are available to only that

process

* Scoping rules apply to constants, variables, signals and files

VHDL Objects

Scoping Rules

41Basic VHDL course

Data Types

Types

Access Composite

Array RecordScalar

Integer Real Enumerated Physical

42Basic VHDL course

* Integer Types

- Minimum range for any implementation as defined

by standard: -2,147,483,647 to 2,147,483,647

Scalar Types

ARCHITECTURE test_int OF test IS

BEGIN

PROCESS (X)

VARIABLE a: INTEGER;

BEGIN

a := 1; -- OK

a := -1; -- OK

a := 1.0; -- bad

END PROCESS;

END TEST;

43Basic VHDL course

* Real Types

- Minimum range for any implementation as defined by

standard: -1.0E38 to 1.0E38

Scalar Types (cntd.)

ARCHITECTURE test_real OF test IS

BEGIN

PROCESS (X)

VARIABLE a: REAL;

BEGIN

a := 1.3; -- OK

a := -7.5; -- OK

a := 1; -- bad

a := 1.7E13; -- OK

a := 5.3 ns; -- bad

END PROCESS;

END TEST;

44Basic VHDL course

* Enumerated Types

- User defined range

Scalar Types (cntd.)

TYPE binary IS (ON, OFF);

...some statements ...

ARCHITECTURE test_enum OF test IS

BEGIN

PROCESS (X)

VARIABLE a: binary;

BEGIN

a := ON; -- OK

... more statements ...

a := OFF; -- OK

... more statements ...

END PROCESS;

END TEST;

45Basic VHDL course

* Physical Types:

- Can be user defined range

Scalar Types (cntd.)

TYPE resistence IS RANGE 0 to 1000000

UNITS

ohm; -- ohm

Kohm = 1000 ohm; -- 1 K

Mohm = 1000 kohm; -- 1 M

END UNITS;

- Time units are the only predefined physical type in

VHDL

46Basic VHDL course

* The predefined time units are as as follows

Scalar Types (cntd.)

TYPE TIME IS RANGE -2147483647 to 2147483647

UNITS

fs; -- femtosecond

ps = 1000 fs; -- picosecond

ns = 1000 ps; -- nanosecond

us = 1000 ns; -- microsecond

ms = 1000 us; -- millisecond

sec = 1000 ms; -- second

min = 60 sec; -- minute

hr = 60 min; -- hour

END UNITS;

47Basic VHDL course

* Array Types:

- Used to collect one or more elements of a similar type

in a single construct

- Elements can be any VHDL data type

Composite Types

TYPE data_bus IS ARRAY (0 TO 31) OF BIT;

0 ...element numbers...31

0 ...array values...1

SIGNAL X: data_bus;

SIGNAL Y: BIT;

Y <= X(12); -- Y gets value of 12th element

48Basic VHDL course

* Another sample one-dimensional array (using the DOWNTO

order)

Composite Types (cntd.)

* DOWNTO keyword orders elements from left to right,

with decreasing element indices

TYPE register IS ARRAY (15 DOWNTO 0) OF BIT;

15 ...element numbers... 0

0 ...array values... 1

Signal X: register;

SIGNAL Y: BIT;

Y <= X(4); -- Y gets value of 4th element

49Basic VHDL course

* Two-dimensional arrays are useful for describing truth tables.

Composite Types (cntd.)

TYPE truth_table IS ARRAY(0 TO 7, 0 TO 4) OF BIT;

CONSTANT full_adder: truth_table := (

"000_00",

"001_01",

"010_01",

"011_10",

"100_01",

"101_10",

"110_10",

"111_11");

50Basic VHDL course

* Record Types

- Used to collect one or more elements of a different types in

single construct

- Elements can be any VHDL data type

- Elements are accessed through field name

Composite Types (cntd.)

TYPE binary IS (ON, OFF);

TYPE switch_info IS

RECORD

status : binary;

IDnumber : integer;

END RECORD;

VARIABLE switch : switch_info;

switch.status := on; -- status of the switch

switch.IDnumber := 30; -- number of the switch

51Basic VHDL course

* Access

- Similar to pointers in other languages

- Allows for dynamic allocation of storage

- Useful for implementing queues, fifos, etc.

Access Types

52Basic VHDL course

* Subtype

- Allows for user defined constraints on a data type

- May include entire range of base type

- Assignments that are out of the subtype range result

in an error

Subtypes

SUBTYPE <name> IS <base type> RANGE <user range>;

SUBTYPE first_ten IS integer RANGE 1 to 10;

53Basic VHDL course

(Example)

Subtypes

SUBTYPE byte IS bit_vector(7 downto 0)

signal x_byte: byte;

signal y_byte: bit_vector(7 downto 0);

IF x_byte = y_byte THEN ...

TYPE byte IS bit_vector(7 downto 0);

signal x_byte: byte;

signal y_byte: bit_vector(7 downto 0);

IF x_byte = y_byte THEN ...

Compiler produces an error

Compiler produces no errors

54Basic VHDL course

* VHDL has several different data types available to the

designer

* Enumerated types are user defined

* Physical types represent physical quantities

* Arrays contain a number of elements of the same type or

subtypes

* Records may contain a number of elements of different

types or subtypes

* Access types are basically pointers

* Subtypes are user defined restrictions on the base type

Summary

55Basic VHDL course

* Language defined attributes return information about

certain items in VHDL

- Types, subtypes

- Procedures, functions

- Signals, variables, constants

- Entities, architectures, configurations, packages

- Components

* VHDL has several predefined attributes that are useful to

the designer

* Attributes can be user-defined to handle custom situations

(user-defined records, etc.)

Attributes

56Basic VHDL course

* General form of attribute use is:

Attributes

<name> ' <attribute_identifier>

* Some examples of signal attributes

X'EVENT -- evaluates TRUE when an event on signal X has just

-- occured.

X'LAST_VALUE -- returns the last value of signal X

X'STABLE(t) -- evaluates TRUE when no event has occured on

-- signal X in the past t" time

(Signal Attributes)

57Basic VHDL course

Attributes

'LEFT -- returns the leftmost value of a type

'RIGHT -- returns the rightmost value of a type

'HIGH -- returns the greatest value of a type

'LOW -- returns the lowest value of a type

'LENGTH -- returns the number of elements in a constrained array

'RANGE -- returns the range of an array

(Value Attributes)

58Basic VHDL course

Attributes
(Example)

TYPE count is RANGE 0 TO 127;

TYPE states IS (idle, decision,read,write);

TYPE word IS ARRAY(15 DOWNTO 0) OF bit;

count'left = 0 states'left = idle word'left = 15

count'right = 127 states'right = write word'right = 0

count'high = 127 states'high = write word'high = 15

count'low = 0 states'low = idle word'low = 0

count'length = 128 states'length = 4 word'length = 16

count'range = 0 TO 127

word'range = 15 DOWNTO 0

59Basic VHDL course

* This example shows how attributes can be used in the

description of an 8-bit register.

* Specifications

- Triggers on rising clock edge

- Latches only on enable high

- Has a data setup time of 5 ns.

Register Example

ENTITY 8_bit_reg IS

PORT (enable, clk : IN std_logic;

a : IN std_logic_vector (7 DOWNTO 0);

b : OUT std_logic_vector (7 DOWNTO 0);

END 8_bit_reg;

60Basic VHDL course

* A signal having the type std_logic may assume the values:

'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', or '-'

* The use of 'STABLE detects for setup violations

Register Example (contd.)

ARCHITECTURE first_attempt OF 8_bit_reg IS

BEGIN

PROCESS (clk)

BEGIN

IF (enable = '1') AND a'STABLE(5 ns) AND

(clk = '1') THEN

b <= a;

END IF;

END PROCESS;

END first_attempt;

* What happens if clk was 'X'?

61Basic VHDL course

* The use of 'LAST_VALUE ensures the clock is rising from

a 0 value

Register Example (contd.)

ARCHITECTURE behavior OF 8_bit_reg IS

BEGIN

PROCESS (clk)

BEGIN

IF (enable ='1') AND a'STABLE(5 ns) AND

(clk = '1') AND (clk'LASTVALUE = '0') THEN

b <= a;

END IF;

END PROCESS;

END behavior;

62Basic VHDL course

* VHDL provides two different types of execution: sequential

and concurrent

* Different types of execution are useful for modeling of real

hardware

* Sequential statements view hardware from a programmer

approach

* Concurrent statements are order-independent and

asynchronous

Concurrent and Sequential Statements

63Basic VHDL course

Concurrent Statements

Three types of concurrent statements

used in dataflow descriptions

Boolean Equations when-elsewith-select-when

For concurrent

signal assignments

For selective

signal assignments

For conditional

signal assignments

64Basic VHDL course

Concurrent Statements
Boolean equations

entity control is port(mem_op, io_op, read, write: in bit;

memr, memw, io_rd, io_wr:out bit);

end control;

architecture control_arch of control is

begin

memw <= mem_op and write;

memr <= mem_op and read;

io_wr <= io_op and write;

io_rd <= io_op and read;

end control_arch;

65Basic VHDL course

Concurrent Statements
with-select-when

entity mux is port(a,b,c,d: in std_logic_vector(3 downto 0);

s: in std_logic_vector(1 downto 0);

x: out std_logic_vector(3 downto 0));

end mux;

architecture mux_arch of mux is

begin

with s select

x <= a when "00",

b when "01",

c when "10",

d when others;

end mux_arch;

66Basic VHDL course

Concurrent Statements
with-select-when (cntd.)

architecture mux_arch of mux is

begin

with s select

x <= a when "00",

b when "01",

c when "10",

d when "11",

"--" when others;

end mux_arch;

possible values

of s

67Basic VHDL course

Concurrent Statements
when-else

architecture mux_arch of mux is

begin

x <= a when (s = "00") else

b when (s = "01") else

c when (s = "10") else

d;

end mux_arch;

This may be

any simple

condition

68Basic VHDL course

Logical Operators

AND OR NAND

XOR XNOR NOT

* Predefined for the types:

- bit and Boolean.

- One dimensional arrays of bit and Boolean.

* Logical operators don't have an order of precedence

X <= A or B and C

will result in a compile-time error.

69Basic VHDL course

Relational Operators

* Used for testing equality, inequality, and ordering.

* (= and /=) are defined for all types.

* (<, <=, >, and >=) are defined for scalar types

* The types of operands in a relational operation must

match.

=

/= >=

<=

>

<

70Basic VHDL course

Arithmetic Operators

Addition operators

Multiplication operators

Miscellaneous operators

+

/ mod*

& -

rem

** abs

71Basic VHDL course

The order in which signal assignments are listed does

affect the result.

Sequential Statements

Sequential statements are contained in a process, function,

or procedure.

Inside a process signal assignment is sequential from a

simulation point of view.

72Basic VHDL course

architecture behav of eqcomp is

begin

comp: process (a,b)

begin

equals <= '0';

if a = b then

equals <= '1';

end if;

end process comp;

end behav;

Process Statement

* Process statement is a VHDL construct that embodies algorithms

* A process has a sensitivity list that identifies which signals will

cause the process to exeute.

optional label sensitivity list

73Basic VHDL course

Process Statement
The use of wait statements

Proc1: process (a,b,c)

begin

x <= a and b and c;

end process;

Proc2: process

begin

x <= a and b and c;

wait on a, b, c;

end process;

Equivalent

74Basic VHDL course

Sequential Statements

Four types of sequential statements

used in behavioral descriptions

if-the-else for-loopcase-when while-loop

75Basic VHDL course

Sequential Statements
if-then-else

signal step: bit;

signal addr: bit_vector(0 to 7);
.
.
.

p1: process (addr)

begin

if addr > x"0F" then

step <= '1';

else

step <= '0';

end if;

end process;

signal step: bit;

signal addr: bit_vector(0 to 7);
.
.
.

p2: process (addr)

begin

if addr > x"0F" then

step <= '1';

end if;

end process;

P2 has an implicit memory

76Basic VHDL course

Sequential Statements
if-then-else (cntd.)

architecture mux_arch of mux is

begin

mux4_1: process (a,b,c,d,s)

begin

if s = "00" then

x <= a;

elsif s = "01" then

x <= b;

elsif s = "10" then

x <= c;

else

x <= d;

end if;

end process;

end mux_arch;

77Basic VHDL course

Sequential Statements
case-when

case present_state is

when A => y <= '0'; z <= '1';

if x = '1' then

next_state <= B;

else

next_state <= A;

end if;

when B => y <= '0'; z <= '0';

if x = '1' then

next_state <= A;

else

next_state <= B;

end if;

end case;

A

B

1/001/01

0/01

0/00

inputs: x

outputs: y,z

78Basic VHDL course

Sequential Statements
for-loop

type register is bit_vector(7 downto 0);

type reg_array is array(4 downto 0) of register;

signal fifo: reg_array;

process (reset)

begin

if reset = '1' then

for i in 4 downto 0 loop

if i = 2 then

next;

else

fifo(i) <= (others => '0');

end if;

end loop;

end if;

end process;

Reset

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0 0 0 0 0 00 0

79Basic VHDL course

Sequential Statements
while-loop

type register is bit_vector(7 downto 0);

type reg_array is array(4 downto 0) of register;

signal fifo: reg_array;

process (reset)

variable i: integer := 0;

begin

if reset = '1' then

while i <= 4 loop

if i /= 2 then

fifo(i) <= (others => '0');

end if;

i := i + 1;

end loop;

end if;

end process;

Reset

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0 0 0 0 0 00 0

80Basic VHDL course

* High level design constructs that are most commonly

used for:

- Type conversions

- Operator overloading

- Alternative to component instantiation

- Any other user defined purpose

* The subprograms of most use are predefined in:

- IEEE 1076, 1164, 1076.3 standards

Functions and Procedures

81Basic VHDL course

function bv2I (bv: bit_vector) return integer is

variable result, onebit: integer := 0;

begin

myloop: for i in bv'low to bv'high loop

onebit := 0;

if bv(i) = '1' then

onbit := 2**(I-bv'low);

end if;

result := result + onebit;

end loop myloop;

return (result);

end bv2I;

Functions

* Statements within a

function must be

sequential.

* Function parameters

can only be inputs

and they cannot be

modified.

* No new signals can be

declared in a function

(variables may be

declared).

Type conversion

82Basic VHDL course

function inc (a: bit_vector) return bit_vector is

variable s: bit_vector (a'range);

variable carry: bit;

begin

carry := '1';

for i in a'low to a'high loop

s(i) := a(i) xor carry;

carry := a(i) and carry;

end loop

return (s);

end inc;

Functions

* Functions are restricted

to substite components

with only one output.

Shorthand for simple components

83Basic VHDL course

function "+" (a,b: bit_vector) return

bit_vector is

variable s: bit_vector (a'range);

variable c: bit;

variable bi: integer;

begin

carry := '0';

for i in a'low to a'high loop

bi := b'low + (i - a'low);

s(i) := (a(i) xor b(bi)) xor c;

c := ((a(i) or b(bi)) and c) or

(a(i) and b(bi));

end loop;

return (s);

end "+";

Functions
Overloading functions

function "+" (a: bit_vector; b: integer)

return bit_vector is

begin

return (a + i2bv(b,a'length));

end "+";

84Basic VHDL course

Using Functions

Functions may be defined in:

* declarative region of an architecture

(visible only to that architecture)

* package

(is made visible with a use clause)

use work.my_package.all

architecture myarch of full_add is

begin

sum <= a xor b xor c_in;

c_out <= majority(a,b,c_in)

end;

use work.my_package.all

architecture myarch of full_add is
.
.
.

begin

sum <= a xor b xor c_in;

c_out <= majority(a,b,c_in)

end;

Here we put the function

definition

85Basic VHDL course

Procedures

entity flop is port(clk: in bit;
data_in: in bit_vector(7 downto 0);
data_out, data_out_bar: out bit_vector(7 downto 0));

end flop;

architecture design of flop is

procedure dff(signal d: bit_vector; signal clk: bit;
signal q, q_bar: out bit_vector) is

begin
if clk'event and clk = '1' then

q <= d; q_bar <= not(d);
end if;

end procedure;

begin
dff(data_in, clk, data_out,data_out_bar);

end design;

86Basic VHDL course

* Used to declare and store:

- Components

- Type declarations

- Functions

- Procedures

* Packages and libraries provide the ability to reuse

constructs in multiple entities and architectures

Libraries and Packages

87Basic VHDL course

* Library is a place to which design units may be compiled.

*Two predefined libraries are the IEEE and WORK

libraries.

* IEEE standard library contains the IEEE standard design

units. (e.g. the packages: std_logic_1164, numeric_std).

* WORK is the default library.

* VHDL knows library only by logical name.

Libraries

88Basic VHDL course

* A library is made visible using the library clause.

Libraries
How to use ?

library ieee;

* Design units within the library must also be made visible via

the use clause.

for all: and2 use entity work.and_2(dataflow);

for all: and3 use entity work.and_3(dataflow);

for all : or2 use entity work.or_2(dataflow);

for all : not1 use entity work.not_2(dataflow);

89Basic VHDL course

* Packages are used to make their constructs visible to other

design units.

Packages

Package

Package declaration Package body

(optional)

90Basic VHDL course

Packages

Package declaration may contain

Basic declarationsSignal declarations

Attribute declarationsComponent declarations

Types, subtypes Constants SubprogramsUse clause

91Basic VHDL course

Example of a package declaration

Package Declaration

package my_package is

type binary is (on, off);

constant pi : real : = 3.14;

procedure add_bits3 (signal a, b, en : in bit;

signal temp_result, temp_carry : out bit);

end my_package;

The procedure body is defined in the "package body"

92Basic VHDL course

* The package declaration contains only the declarations of

the various items

* The package body contains subprogram bodies and other

declarations not intended for use by other VHDL entities

Package Body

package body my_package is

procedure add_bits3 (signal a, b, en : in bit;

signal temp_result, temp_carry : out bit) is

begin

temp_result <= (a xor b) and en;

temp_carry <= a and b and en;

end add_bits3;

end my_package;

93Basic VHDL course

Package
How to use ?

* A package is made visible using the use clause.

use the binary and add_bits3 declarations

use my_package.binary, my_package.add_bits3;

... entity declaration ...

... architecture declaration ...

use all of the declarations in package my_package

use my_package.all;

... entity declaration ...

... architecture declaration ...

94Basic VHDL course

In this case, a generic called prop_delay was added to the

entity and defined to be 10 ns

Generics

* Generics may be added for readability, maintenance and

configuration.

entity half_adder is

generic (prop_delay : time := 10 ns);

port (x, y, enable: in bit;

carry, result: out bit);

end half_adder;

Default value

when half_adder

is used, if no other

value is specified

95Basic VHDL course

Generics (cntd.)

architecture data_flow of half_adder is

begin

carry = (x and y) and enable after prop_delay;

result = (x xor y) and enable after prop_delay;

end data_flow;

96Basic VHDL course

Generics (cntd.)

architecture structural of two_bit_adder is

component adder generic(prop_delay: time);

port(x,y,enable: in bit; carry, result: out bit);

end component;

for c1: adder use entity work.half_adder(data_flow);

for c2: adder use entity work.half_adder(data_flow);

signal d: bit;

begin

c1: adder generic map(15 ns) port map (a,b,enable,d,c);

c2: adder generic map(30 ns) port map (e,d,enable,g,f);

end structural;

ab

d

c

30 ns

g f

enable

e

15 ns

97Basic VHDL course

* Delay is created by scheduling a signal assignment for a

future time

* There are two main types of delay supported VHDL

- Inertial

- Transport

DelayInput Output

Delay Types

98Basic VHDL course

* Inertial delay is the default delay type

* It absorbs pulses of shorter duration than the

specified delay

-- Inertial is the default

Output <= not Input after 10 ns;
DealyInput Output

Inertial Delay

5 10 15 20 25 30 35

Input

Output

99Basic VHDL course

* Must be explicitly specified by user

* Passes all input transitions with delay

-- TRANSPORT must be specified

Output <= transport not Input after 10 ns;

DealyInput Output

Transport Delay

5 10 15 20 25 30 35

Input

Output

100Basic VHDL course

* VHDL is a worldwide standard for the description and

modeling of digital hardware

* VHDL gives the designer many different ways to describe

hardware

* Familiar programming tools are available for complex and

simple problems

* Sequential and concurrent modes of execution meet a large

variety of design needs

* Packages and libraries support design management and

component reuse

Summary

101Basic VHDL course

D. R. Coehlo, The VHDL Handbook, Kluwer Academic

Publishers, 1989.

R. Lipsett, C. Schaefer, and C. Ussery, VHDL: Hardware

Description and Design, Kluwer Academic Publishers, 1989.

Z. Navabi, VHDL: Analysis and Modeling of Digital Systems,

McGraw-Hill, 1993.

IEEE Standard VHDL Language Reference Manual,

IEEE Std 1076-1993.

References

102Basic VHDL course

J. Bhasker, A VHDL Primer, Prentice Hall, 1995.

Perry, D.L., VHDL, McGraw-Hill, 1994.

K. Skahill, VHDL for Programmable Logic,

Addison-Wesley, 1996

References

